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The results of micro- and nanoscale research of fractal structure sediments from mineral water re-

ceived by the drop method are given. Qualitative analysis of the underlying physical phenomena, allowed 

us to establish the conditions of their 3D-fractalization that consider the size of colloidal nanoparticles, its 

location and height from the drop center : rmin  Rmax  hmax and rmax  Rmin  hmin. It is shown that the main 

contribution to 3D fractalization is due to surface tension forces and the Coulomb force interaction. 
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1. INTRODUCTION 
 

Changeover to the electronic elemental base with 

transistor elements of a nano-domain size (  10 nm) 

[1, 2] indicates that traditional technological approach-

es are faced with the problem that is due to fundamen-

tal physical limits,  making progress in nanoelectronics 

critically difficult. This is dictated in many ways by the 

fact that the changeover to nano-domain is accompa-

nied by a manifestation of new physico-chemical effects 

[3], in particular, self- organization and self-

assemblage, on practical use of which development en-

gineers of both electronics and new nanostructured 

materials place great hopes. 

In this connection , natural drop-like entities that 

contain colloidal micro-inclusions with particle radius 

(R) whose total energy (E) is determined in this way: 

E  R3 + R2 + R, where contributions of volume en-

ergy – , surface energy –  and surface tension –  are 

included, present an appropriate model for studying 

regularities in space self-organization and self-

assemblage. In [4] with 2D-cell automate a computer 

planar model was examined of self-assemblage and 

self-organization of cluster nanodendritic formations, 

as components of noncovalent synthesis, as a result of 

adhesion between molecules and ensembles with con-

sideration for the density distribution of diffusing par-

ticles. However, planar problems were sold only. For-

mation of columnar semiconducting polymeric 

nanostructures that originate in spin casting with con-

sideration for the effect of substrate, solvent, concen-

tration and external electric field applied was investi-

gated in [5]. Synthesis and study of self-assembled 3D 

droplet colloidal microstructures formed at a superhy-

drophobic surface that has nucleating structural ele-

ments of colloidal sizes as functions of evaporation con-

ditions, number of particles and their size are consid-

ered in [6]. The workers in [7], as applied to binary sys-

tems from metals, proposed an analytical model of clus-

ter self-organization via voluminous crystallization in a 

supercooled state that considers their kinetic varia-

tions, nonlinearity, and processes of their generation as 

being non-equilibrium. Those formations are assigned 

sets of eigen-frequencies. Parametric or resonant exci-

tation of these frequencies makes it possible, according 

to [7], control the crystallization of cluster binary sys-

tems. The results of investigation with fractal struc-

tures (FSs) from heterogeneous and heterophase sys-

tems of natural origin are provided in [8, 9]. Those 

structures were obtained by the drop method when 

hydrodynamic streams and gravitational effects are 

small i.e. L  ( / g)1/2  3 nm for water, and capillary 

forces (dependent on surface forces ), adsorption, and 

interphase forces that are dependent on the density of 

interacting systems, are major contributors to the pro-

cesses of self-organization and self-assemblage. 

The data obtained on 3D-fractalization in distribu-

tion of chemical elements and compounds that appear 

as a result of mineral waters (MWs) evaporation pre-

senting ideal natural colloidal solutions, in our view, 

add to the knowledge about self-organization and self-

assemblage in such systems and are of great im-

portance for the developments in nanomaterial science 

and electronics. 

 

2. EXPERIMENTAL PROCEDURES 
 

Sediments of MWs from mineral springs of North-

ern Caucasus and Kursk region (Russia) have been 

studied. These MWs are characterized by a diversity of 

cation and anion colloidal formations from which at 

normal conditions (NCs) dendritic structures are 

formed after precipitation by the drop method. The 

features of FSs have been studied with the help of 

atomic-force microscope (AFM) (SmartSPM AIST 

NT,Russia),  scanning electron microscope (SEM) –

 (JSM 6610-LV, JEOL, Japan), digital holographic mi-

croscope (Lynceetec, Switzerland). The elemental com-

position of FSs and their distribution through thick-

ness were analyzed by energy dispersive analysis 

(EDA) – (EDX Oxford Instruments, Great Britain). 

Chemical structure was determined by IR-Fourier 

spectroscopy (NicoletiS50, Thermo Fisher Scientific, 

USA). 

Self-organized structure formations formed by the 

droplet method feature indisputable advantages, namely, 
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simplicity and range of applicability. To form FSs sub-

strates from glass, single crystal silicon and aluminum 

were used. It turned out that the most contrast SEM-

images were formed at a silicon substrate. Typical SEM-

images of such structures from MWs of Borjomi, Essen-

tuki (Caucasus) – 4 and 17 are given in Fig. 1 a-c. Similar 

structures were formed from MWs of Kursk region. 
 

 
 

 
 

 
 

Fig. 1 – SEM-images of MW sediments at a silicon substrate: 

a – ring-formation from Borjomi FSs, b and c – fragments of 

FSs Essentuki 4 and 17, respectively 

 

 

Table 1 – Elemental analysis of FSs in sediments of different 

MWs with the evaluation of the degree of each element 
 

Minerals  
Elements 

C O Na S Cl Ca Mg 

Essentuki 4 
At fractal 10 48 20 –  – – 

At. Wt. % 19 47 27 – 6 – 1 

Essentuki 

17 

At fractal 17 59 75 –    

At. Wt. % 20 41 26  12   

Borjomi 
At fractal 10 41 27 –    

At. Wt. % 22 48 23  5 1  

Spring 1 

Kursk 

At fractal – 11 6 69  32 – 

At. Wt. % – 43 7 3  9 3 

Spring 2 

Kursk 

At fractal – 27 11 63  42  

At. Wt. % – 48 7 4  9 3 
 

The EDA data of chemical element distribution that 

form FSs are given in Fig. 2 a-b in which, as an exam-

ple, an individual fragment sediment of Essentuki – 4 

is shown in Fig. 1 b. Comparison of SEM-images of 

many-layered EDA (see Fig. 2 a) with images of their 

distributions for Na and Cl indicates a coincidence both 

in terms of the general configuration and in details of 

individual elements: Na, O, and C. The distribution of 

these elements in the central part of FSs is character-

ized by uniformity. At the same time, the elemental 

distribution for Na occurs, which repeats only external 

contour of FSs. This feature is typical of all other sedi-

ments studied, in which chlorides and carbonates are 

well representative. Fig. 2 c shows SEM-images of both 

the whole studied FS (transverse size 211 m) and the 

detailed image of its edge fragment with the size of 

8.6 m (insert). It should be noted that the elemental 

analysis data indicate the absence of Cl just in this 

part. Image in Fig. 2c on morphological structure has 

whiskers (crystals) [10]. 
 

 
 

 
 

Fig. 2 – Elemental distribution in FS on MWs sediments Es-

sentuki – 4: a – general view of elements (Mg, Cl, Si, Na, O, 

C), b – for Na, c – SEM-image of FS and its enlarged by 

15  103 times edge fragment 
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Table 2 – Chemical composition of FS according to EDA data 

dependent on the accelerating voltage value, kV. The denomi-

nator shows predicted radius of electron penetration, m 
 

Voltage, 

kV 

Atomic weight, % / predicted penetration radi-

us, µm 

C O Na Mg Cl 

2 46.3/0.02 26/59.7 25.9/0.06 1.9/0.04 – /0.02 

3 26/0.04 36/117.5 37/0.12 1.5/0.07 – /0.04 

5 21.7/0.1 34.6/276 29.3/0.28 0.8/0.16 13.6/0.09 

10 20.5/0.33 41.4/878 28.1/0.9 0.6/0.52 6.4/0.29 

20 21.8/1.04 45.8/2794 26.2/2.87 0.6/1.66 5.6/0.9 
 

EDA made it possible, at various accelerating volt-

ages (2, 4, 5, 10, and 20 kV) when the penetration 

depth of the electron beam is varied, to determine the 

content of chemical elements at different levels from 

surface in all FS studied (Table 2). The variation in 

content of individual elements with depth can be indic-

ative of their 3D distribution in FS sediments. For ex-

ample, content of C and Mg continues to be constant 

starting from 5 kV, whereas at this voltage Cl only be-

gins to be detected, which is clear proof that Cl sets in 

the low part of FS. 

Analysis of images of FS formations obtained with dig-

ital holographic microscope also points to their tridimen-

sionality. Given in Fig. 3 a is a reversed image of 3D-

image of such structure and its profile along one brunch of 

FS: from the center to the edge with height difference 

within the range from – 50 to – 370 nm. As is seen from 

Fig. 3 b the height variation of FS is of stepwise character. 

The heights determined from the figure at different levels 

of FS with respect to the substrate are given in Table 3. 

The FS thickness from the top level (– 370 nm) monoton-

ically decreases taking on values 303, 285, 165, and 

137 nm. This series of values is approximated with the 

expression h  –0.12r2 + 1.09r – 0.1, where r is the dis-

tance from the FS center. Tridimensionality of FS is also 

supported by the data of SEM-images (see Fig. 3 c) from 

which it follows that the maximum height difference val-

ue of the sediment is on the order of 40 m. 
 

 
 

 
 

 

 

Fig. 3 – Image of one fractal from the sediment of Essentuki-

4: a – 3D-image, b – it’s profile, c – 3D-SEM-image 
 

Table 3 – Variation of FS height above the level of the silicon 

substrate (see Fig. 3 b) 
 

Kind of mineral 

water 

The height and number of levels above 

the substrate fractal Si (h), m 

0-1 0-2 0-3 0-4 

Essentuki-4 0.135 0.44 0.725 0.89 

Essentuki-17 1.3 2.2 2.8 3.2 

Borzhomy 1.2 2.2 2.8 3 
 

As is seen from Fig. 3 b to this distribution of com-

pounds of Cl and Na (specifically,  sodium bicarbonate) 

there corresponds the low step (– 70 nm in the reversed 

image). This fact is in reasonably good accord with 

SEM-data (see Fig. 2 c, insert) according to which com-

pounds of NAHCO3-type are detected just at the edges 

of FS. It can be proposed that the following steps corre-

spond to the chemical compounds with lower molecular 

mass that contain Mg, Na, etc., that are the compo-

nents of all studied sediments of MWs. 
 

 

 

Fig. 4 – IR-spectra of FS in MW sediments 
 

For all MWs in the fundamental range of the IR-

absorption spectrum absorption at lines 3397 and 

1640 cm – 1 occurred. For the determination of chemical 

structures that form FS because of the material under 

study was small in both size and amount only IR-

Fourier spectroscopy was found applicable. IR analysis 

spectra obtained for MW sediments with FS beginning 

from the edge of the middle range 450 cm – 1 and up to 

1700 cm – 1 are shown in Fig. 4, and appearing absorp-

tion lines and their identification are given in Table 4. 
 

 

a 

b 
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Table 4 – IR spectra of MW sediments 
 

Compound 

Absorption lines (cm–1)  

Borzhomy 
Essentuki-

4 

Essentuki-

17 

H2O4S 1610   

H3BO3
3 –, 

Cl – 

1574 1575 1578 

1500 1498 1501 

1460 1457 1466 

1434  1435 

 1424  

NO3 
–  1367 1370 

BO3
3 –, 

SiO4
4 –,  

1068   

1044  1047 

1010  1014 

924  925 

  905 

899   

SO4
2 –  872 877 

CO3
2 – 863  865 

Cl –  847  

CO3
2 –, 

NO3 
– 

  838 

BO3
3 –, 

SiO4
4 – 

 765 766 

 754 754 

 700  

 690 691 

648 648 649 

SO4
2 –

 
620 620 620 

 595  

SiO4
4 –, 

SO4
2 – 

534 538 538 

 

3. RESULTS AND DISCUSSION  
 

It should be stressed that FSs were formed from 

compounds and trace elements that are constituents of 

MWs in a cation or anion form (as carbonate, sulfate, 

and other chemical compounds – Table 4). 

EDA conducted at different accelerating voltages 

(see Table 2) makes it possible to calculate radii of pen-

etration area for the electron using empirical depend-

ence that follows from the Bethe equation at Kanaya-

Okayama approximation: H  0.276 AE0
1.67 / (Z0.88 ). 

Here A and Z are atomic weight and number of chemi-

cal element, E0 is the energy of incident electrons 

E0  eU, ρ is density. The prediction results are given in 

Table 2. Numerical analysis of collision trajectories of 

electrons with atoms of FS studied carried out with a 

lot of electrons (not less than 100) by the Monte-Carlo 

method made it possible to determine the size of this 

interaction area for some compounds. In particular, for 

sodium bicarbonate (NaHCO3), one major sediment 

component in MW Essentuki-4, calculated diameter of 

interaction area and penetration depth at voltages of 3, 

5, 10, and 20 kV amounted to 316, 720, 2080, 8800 nm, 

respectively for the diameter and 240, 446, 1580, 

6700 nm – for the depth. Calculated diameter of the 

interaction area at an accelerating voltage of 20 kV 

(8,8 m) has practically coincided with the size of ob-

served area with filamentary crystal formations char-

acteristic of NaHCO3 – 8.6 m (see Fig. 2 c, insert). 

Such structure is typical of NaHCO3 [10]. As was noted, 

this inference follows from the transverse profile of FS 

(see Fig. 3 b and Table 2). In this case, the sizes of rele-

vant areas are in good agreement. 

Analysis of IR spectra revealed that the spectral 

resolution of 1 cm – 1 is enough for studying those mi-

cro-objects since absorption lines observed in a MW 

drop correspond to the following vibrations: along or 

perpendicular to the c axis – radial vibrations of the II 

and asymmetric vibrations of the I type, respectively. 

In [11] according to IR- spectroscopy difference in fre-

quencies of these vibrations (1 and 2) are found, re-

spectively by 54 and 35 cm – 1 in the water layer of 

about 100 m thickness. It is noted that 1 shifts to the 

low-frequency domain with increasing thickness of 

samples studied and 2, conversely, shifts to the high-

frequency domain. In our case at a typical MW thick-

ness of order 250 m according to IR-spectroscopy the 

second type vibrations are excited, for which two sce-

narios are implemented, namely, as a single connection 

of a water molecule with a Na cation or as a connection 

with the cation of two water molecules. In doing so, we 

also note an increase in the frequency shift between the 

vibrations (1 and 2)
 in diametrically opposed direc-

tions, which supports the applicability of IR spectros-

copy for studying colloidal microinclusions as in both 

water solutions and their sediments. 

Using spectra of originating vibration excitations on 

FSs in MW sediments (Fig. 4) with data base [12] anionic 

(hydrogen carbonate – НCO3 
–, sulfate – SO4

2 –, chloride –

 Cl –) and cationic (calcium – Cа2 +, magnesium  – Mg2 +, 

sodium and potassium – Na +, K +) are identified (see Ta-

ble 4). Molecular masses of compounds formed from these 

colloidal microinclusions, in particular, NaHCO3 and 

sulfates of sodium, potassium, magnesium are equal to 

84, 120, 142, 174 g/mol, respectively. According to EDA 

data for FSs, content of Mg2 + and K + is barely detected 

and hence their contributions can be neglected. From 

analysis of IR spectra (see Fig. 4) total intensities (the 

sum of all lines in IR Fourier spectra) for every colloidal 

microinclusion for all given chemical compounds are 

ICO3
 –  38.5 %, ISO4

2 –  7%, IBO3 
–  6.9 %. It follows 

from here that the major role at the initial stage of 

fractal-formation is played by exactly hydrocarbides of 

NaHCO3 – type and chlorides Ca, Mg, Na, and K that 

have most molecular mass. In other words, distribution 

of chemical elements and compounds across the FS 

height is described by an empirical dependence of the 

type H   – 1. 

Using assumptions proposed by J.K. Maxwell for 

studying processes in the droplet within diffusion mod-

el of solvent evaporation (MW) into the atmosphere. 

According to them gravitational force, temperature 

reduction, and auto vibration can be ignored, i.e. the 

Marangoni effect is not considered. Indeed, in our case 

for MWs studied evaluations Mg  LT(α) – 1 d / dT  

give very small value Mg  1 since both surface ten-

sion variations as a function of temperature (T) and 

the droplet diameter (L) are extremely small. And pa-

rameters  – dynamical viscosity, α – temperature con-
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ductivity of water and  become dominant in dictating 

the quantity Mg. This means that in fractalization 

there are no convection phenomena. 

The most important processes, which affect the 

droplet shape due to the evaporation of colloidal solu-

tion, are hydrodynamic streams within the droplet and 

the interaction between the microinclusions and the 

substrate. All studied were conducted in the pinning 

mode along the contact line “water-substrate” i.e. at 

high wettability of the droplet with the substrate. To 

analyze the interparticle interactions of microinclu-

sions in the solution and on the substrate we utilize 

conclusions from [13]. Geometry and material composi-

tion (MW and colloidal microinclusions) dictates im-

plementation of the fractalization scenario: water 

evaporation  hydrodynamic stream  radial distri-

bution of particles. Ring-like shape of FSs in all MW 

sediments (see Fig.1 a) supports this scenario. 

Radial motions of microinclusions are described by 

the dissipative dynamics as Langevin’s equations mod-

ernized by workers in [13]. The existence of anion and 

cation microinclusions in MWs requires consideration 

of Coulomb interactions Fc  qiqj / (40rij
2), which criti-

cally influences on the dynamics of motion of colloidal 

particles and their fractalization. In our view, consid-

eration of Fc corresponds as well to experimentally 

found quadratic dependence of FS height variation for 

different colloidal microinclusions. The final equation 

of motion of particles is the following: 
 

( )

( ) ( ) ( ) 6 ( )

i

N

ij s s L L i B C
i j

dv V
m m v V
dt t

U r F r F r a v V F F 


 
    

 

       
  

 

This equation includes interaction forces with the 

substrate – Fs(rs)  – nAsexp (– ars) and with interphase 

boundary “water-air” – FL(rL)  2Rfn for |rL|  {h, L} 

(only particles within the droplet of height h and diam-

eter L are considered). Here n is an internal unitary 

normal to the interphase boundary “water-air”, f  is the 

effective density of surface energy (per unit area of the 

contact between a particle and a solvent) of sum of the 

interaction forces between i-th and j-th particles if part 

of the potential from the well known model of Der-

jaguin-Landau-Vervey-Overbik acts as a Debye-

Gakkel’s function in the form U(r)  (A / r)exp(– r / ), 

where  is the Debye shielding distance for the particle, 

А  (Ze exp(– R / )2 / (40(1 + R / )2) is a constant 

dictated by particle characteristics. Considered also are 

the Stokes force of the viscous friction, 6R(vi – V), the 

random force of the Brownian motion of the Gauss 

form, FВ, and the forces due to droplet volume varia-

tion, m[(∂V / ∂t) + v(∇V)]. 

The given equation of dynamics takes properly into 

account the role of Coulomb forces, which earlier were 

considered only in the interaction potential U(r) with 

consideration for . Colloidal microinclusions in MWs 

studied, as it follows from IR analysis, have the electri-

cal charges that vary in sign and value. For example, 

there are anionic charges SO4
2 –, Cl –, and also cationic 

charges Cа2 +, Mg2 +, Na +, K +. The present composition 

has an additional effect on the processes of radial mo-

tions of colloidal microinclusions, which are accompa-

nied by neutralization of charges and their agglomera-

tion (coagulation). In the most general case the interac-

tion potential of colloidal particles with charges Zi and 

Zj, radii Ri and Rj  with distance between them being r, 

according to [14] is: Uij(r)  kBTZiZjup k(Ri + Rj –

 r)[(1 + kRi)(1 + kRj )r] – 1. At a first approximation we 

obtain Uij(r)  kBTup k(Ri + Rj – r) / r, where 

k  (8BC)1/2, and B – the Bjerrum length, which 

equals 0.7 nm for H2O at normal conditions. Extrapola-

tion of dependence Uij(r) at the initial and final sites 

makes it possible to find characteristic distances: rmin  

and rmax from the droplet center that determine the 

range for the given system from particles with the max-

imum and minimum radii: rmin  Rmax, and rmax  Rmin, 

where the scenario of stable fractal- formation should 

be implemented. 
 

 
 

 
 

Fig. 5 – a – AFM images of the FS fragment and its part 

(2  2 m), b – transverse profile of FS along the line “1” 
 

Under isothermal conditions for heterophase colloi-

dal systems the rate of FS formation essentially de-

pends on quantities R and E. In accordance with 

Stokes-Einstein’s formula D  kBT / (6R), the value of 

the diffusion coefficient of particles in a solution is in-

versely dependent on their size. This means that large 

particles are not capable of traveling long distances 

and are obviously the first to precipitate, other things 

being equal. Of note is the fact that the rate of particle 

agglomeration is determined by the Fouks formula: 

∂n / ∂t  – 8RDn2 exp(– E / kBT). Here n is concentra-

tion of non-agglomerated particles, D is the diffusion 

coefficient of particle in a solution, E is the height of 

energy agglomeration barrier, T is the solution tem-

perature. Virtually, the Fouks formula dictates the rate 

of particle unification with the FS formation, which is 

reduced with increase in E, diffusion layer thickness, 

and also with reduce in the dropt radius. Agglomera-

a 

b 
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tion indicates both higher rate of this process for larger 

particles (radii Ri or Rj), and the existence of differing 

in height potential barriers (E), which is indirectly 

supported by a stepwise nature of FS (see Fig. 3 b and 

Table 3). In doing so, the droplet height is of critical 

importance. Obviously, as soon as the droplet becomes 

the size of large particles, their diffusion motion either 

turns difficult or stops at all, which corresponds to the 

low limit of the fractalization range. Similarly with 

further evaporation, when the droplet height reaches 

the minimum particle size their diffusion translations 

also become impossible. 

Thus, there is reason to believe that 3D fractalization 

occurs if the following equalities are fulfilled: 

rmin  Rmax  hmax and rmax  R min  hmin. This conclusion 

is supported by AFM images presented in Fig. 5 a and 

insert with shown AFM images: of the whole FS frag-

ment in the field 21  21 m and its part – 2  2 m. 

Here shown is the profile of AFM image with cross-

section of one branch of FS along the line “1”. Measuring 

accuracy across profile cross-section along Z-coordinate 

was not greater than 40 pm. The profile of cross-section 

has three areas differing in height. Two extreme ones 

are virtually coincide whereas the middle is elevated by 

nearly 50 nm. It should be noted that this area is formed 

from nanoparticles the size of 100 nm, as is seen from 

insert to Fig. 5 a. Here the height differential at different 

FS components coincided with its measurement (see 

Fig. 3 b and Table 3) according to which it was deter-

mined with an accuracy of order 1 nm, typical of utilized 

holographic microscope. 

 

4. CONCLUSIONS 
 

The results obtained in nano-scale investigations of 

self-organization and self-assemblage processes of col-

loidal microinclusions observed in mineral water sedi-

ments, and deduced conditions for their fractalization 

are of great practical importance for both modeling 

these phenomena and design, on their basis, of novel 

nanostructured materials and components, including 

the field of electronics. 
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